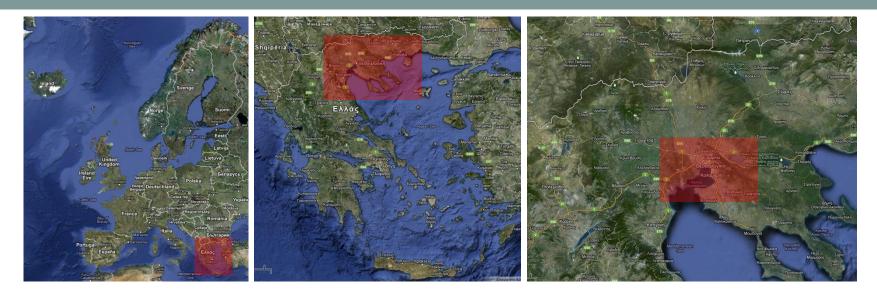


BIG DATA EUROPE


Empowering Communities with Data Technologies

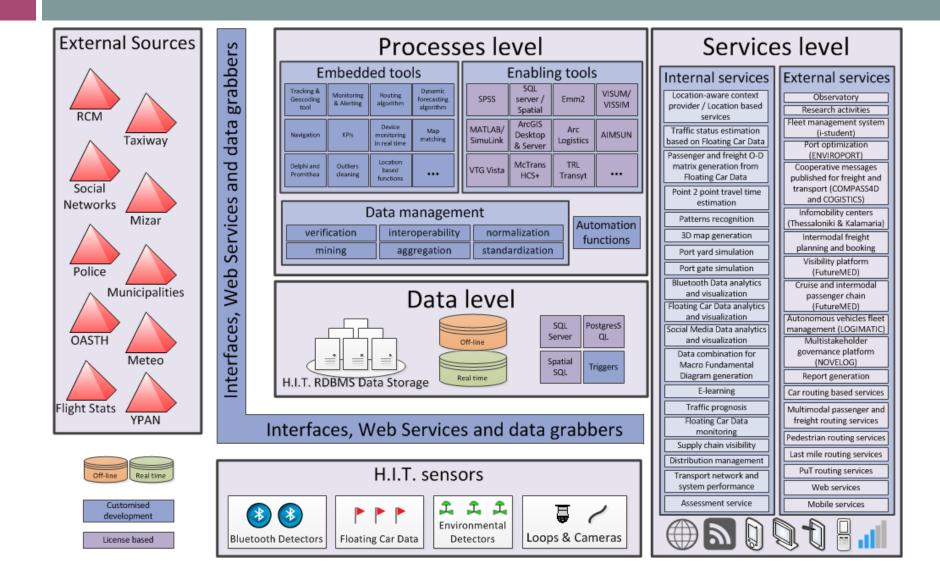
BIG DATA EUROPE TRANSPORT PILOT: INTRODUCING THESSALONIKI

Josep Maria Salanova Grau CERTH-HIT

- ~ 1.400.000 inhabitants & ~ 1.300.000 daily trips
- ~450.000 private cars & ~ 20.000 motorcycles
- 1 (+1) public transport operator for urban trips & 1.950 taxis

~35 public transport operators for extra-urban trips

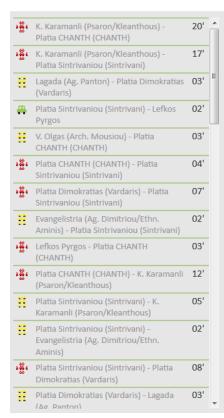
6.433 kms of streets - 8,8 kms of dedicated bus lanes - 89,4 kms of ring road 197.696 parking places


Probe data in Thessaloniki

- Static sensors network: Point to point tracking of MAC ids along the network through Bluetooth detectors (43 devices).
- Dynamic sensors fleet: Floating Car Data provided in real time by a professional fleet (more than 1.200 vehicles).
- Solution Cooperative technologies (COMPASS4D and COGISTICS): RSU is a static sensor and OBU is a dynamic sensors (CAM message).
- Social media (Twitter & Facebook)

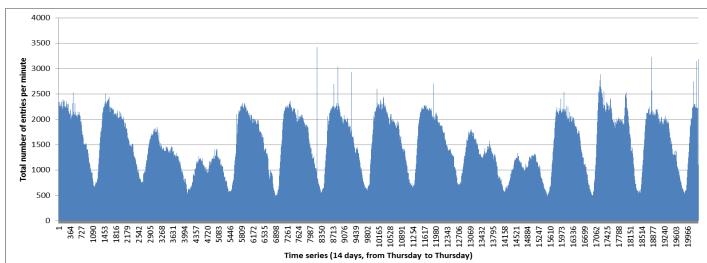
How do we use Probe Data?

- Stationary sensors network: Point to point tracking of MAC ids along the network through 43 Bluetooth device detectors.
 - Travel time estimation
 - Route choice model calibration
 - Origin Destination matrix estimation / Mobility patterns estimation
 - Traffic flow extrapolation
- Oynamic sensors fleet: Floating Car Data provided in real time by a professional fleets composed of 1.200 taxis and 600 buses
 - Traffic status estimation (average speed)
 - Origin Destination matrix estimation / Mobility patterns estimation
 - Taxi/bus performance indicators
- Social media (geolocated tweets & Facebook check-in events)
 - Activity patterns estimation
 - Events / incidents detection
 - Attraction models estimation


Point to point BT network

- 43 detectors (EEA, SEE-ITS & EASYTRIP)
 - 4 million detections per week (peak period)
 - 25.000 unique devices detected per day (one intersection)
 - 1 million "tracked" trips per week
 - 20.000 "tracked" trips per day (one path)
- More detectors installed in other cities and in Bulgaria (SEE-ITS & EASYTRIP)

Point to point BT network


Real time travel time provision to drivers (VMS, internet, smart device)

- More than 1.200 vehicles (one taxi fleet)
 - Circulating 16-24 hours per day
 - Pulse generated each 100 meters (10-12 seconds)

500-2.500 pulses per minute

600 vehicles generating CAM each second

Real time traffic conditions information (speed)

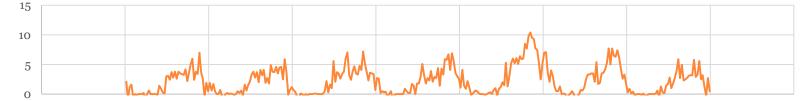
44.000 check-in events per week (750 locations) Up to

50 check-in events per minute (in the 136 locations tagged as bar) 17 check-in events per minute (in the 150 locations tagged as restaurant)

12 check-in events per minute (in the 32 locations tagged as outdoor)

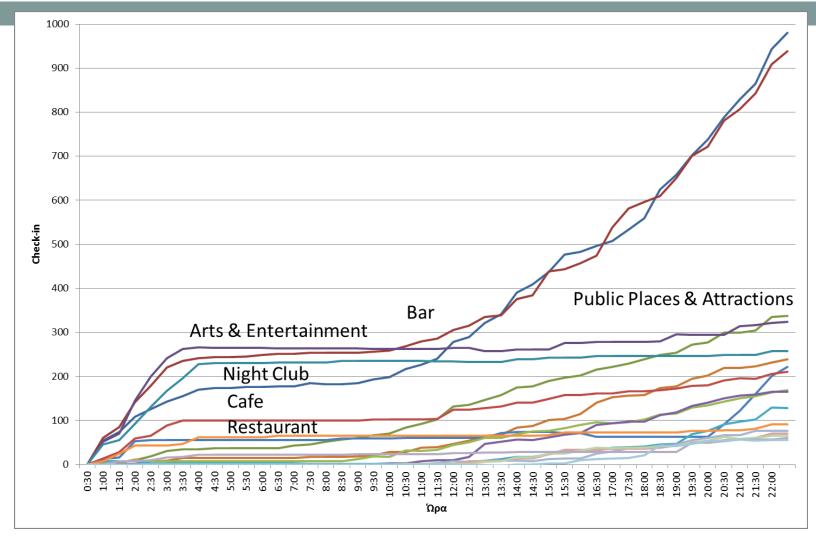
10 check-in events per minute (in the 125 locations tagged as cafe) 10 check-in events per minute (in the 55 locations tagged as nightlife)

Up to

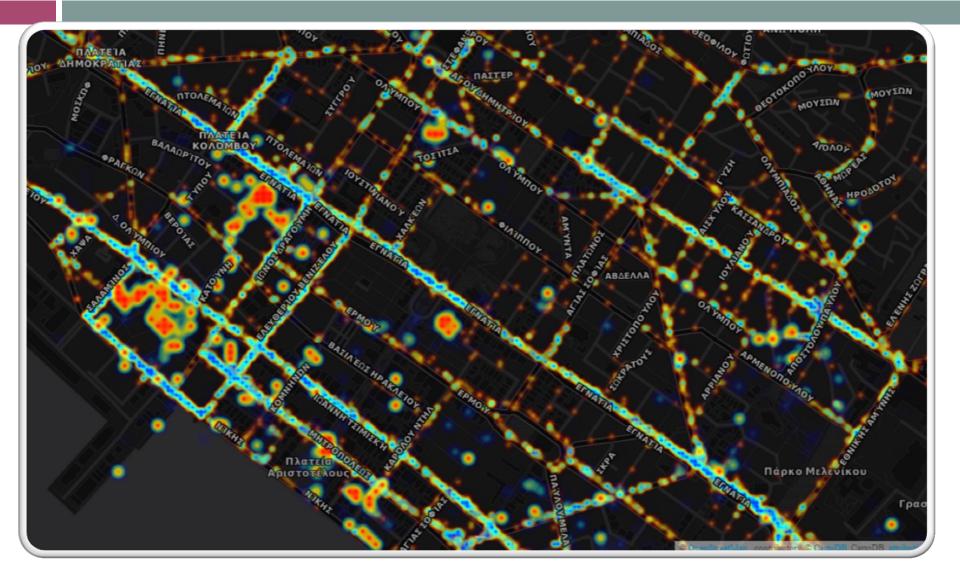

1265 check-in events during the "peak hour"920 check-in events in bars (Sunday 01.00)300 check-in events in restaurants (Saturday 22.00)

 $22/02/2016\ 00200/02/200/02$

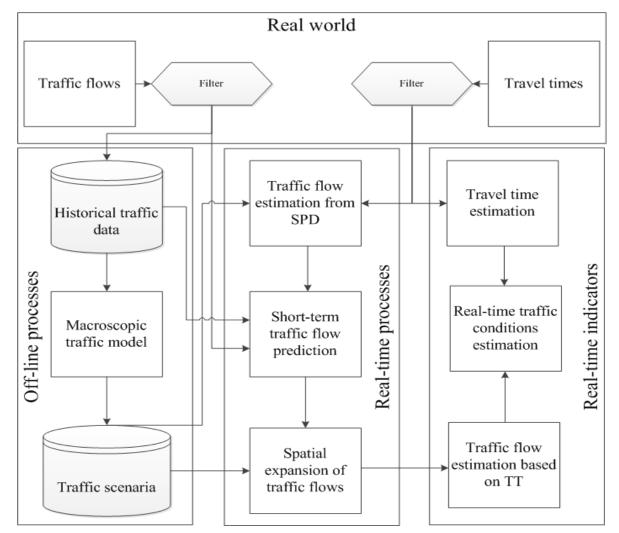
CAFE


22/02/2016 00 20 02

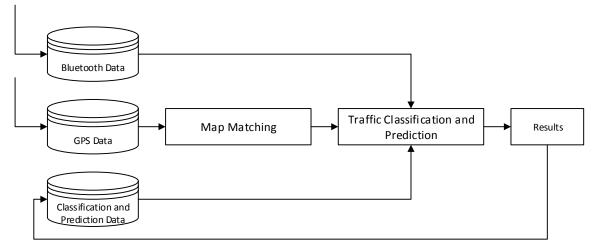
NIGHTLIFE

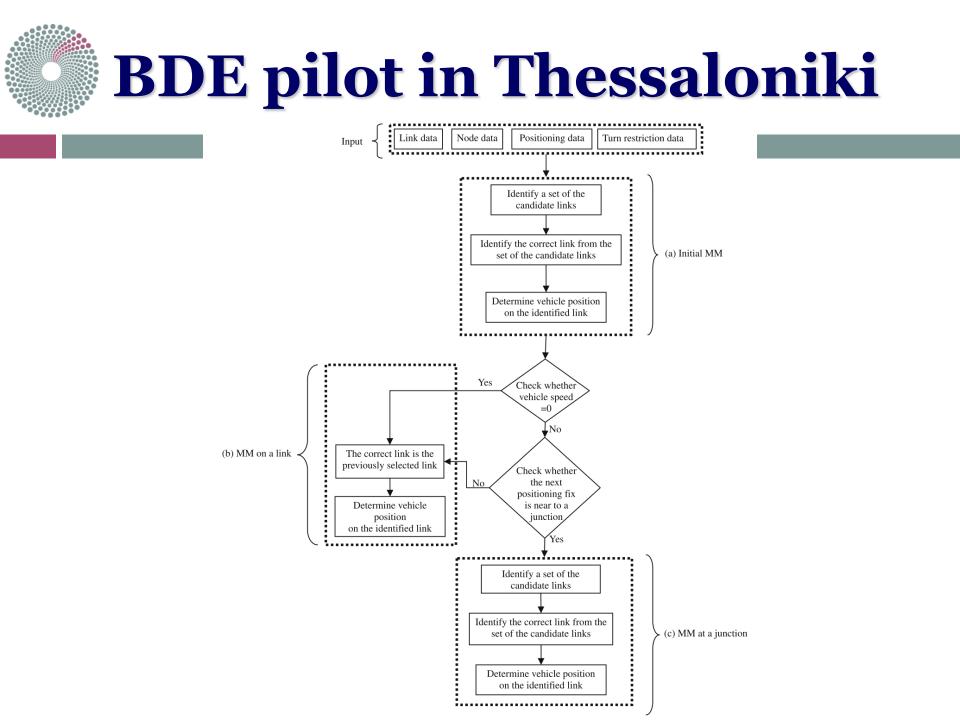


22/02/2016 00 20 / 02/200 / 02/2016 00 20 / 02/200 /



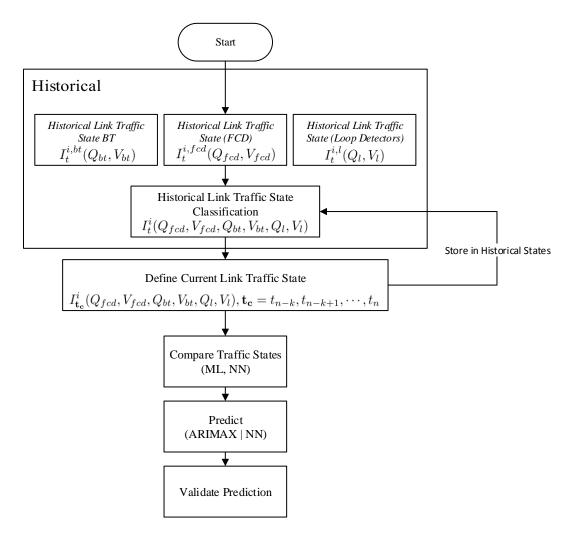
Real-time traffic conditions estimation




Processing of big data in Thessaloniki

- Traffic flow estimation from stationary probe data
- Travel time estimation using stationary probe data
- Travel time estimation using floating probe data
- Traffic flow estimation based on travel time
- Short-term traffic flow prediction
- Spatial expansion of traffic flows
- Real-time traffic conditions estimation

BDE pilot in Thessaloniki


- Probe data that is used
 - Floating Car Data (500-2.500 locations per minute)
 - Bluetooth detections (millions of daily detections in 43 locations)
- Services that are being implemented
 - Improved topology-based map matching
 - Mobility patterns recognition and forecasting

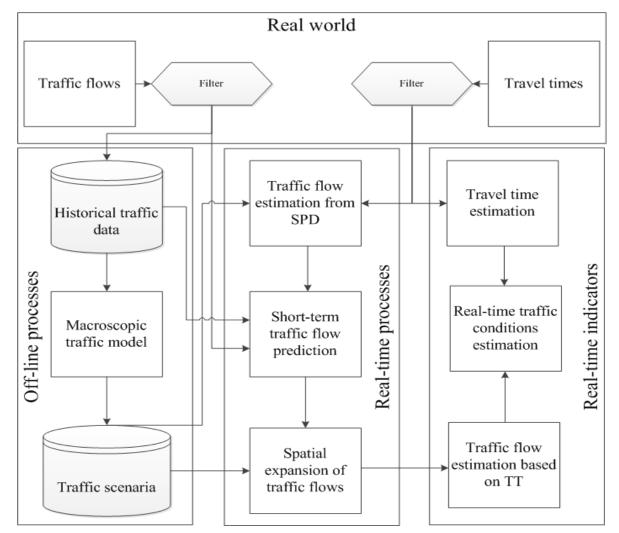
BDE pilot in Thessaloniki

BDE pilot in Thessaloniki

- Future plans (next 2 pilots)
 - Improve the 2 algorithms (historical data)
 - Replace the R components
 - Add the BT data source
 - Add other data sources (conventional and SM)
 - Include more datasets (PuT)
 - Use OSM data

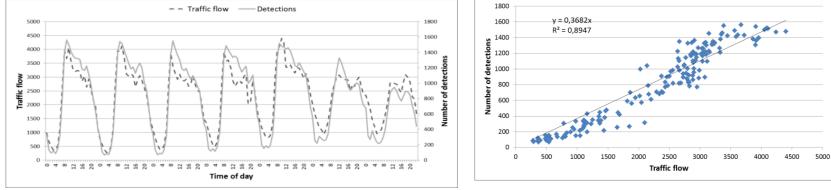
Improve other processes (travel time estimation from BT)

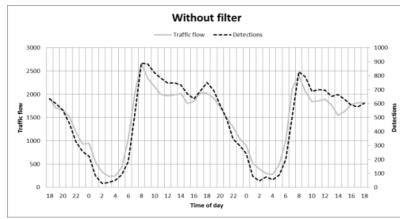
BIG DATA EUROPE

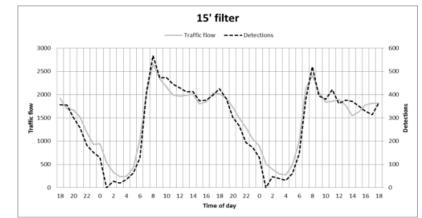

Empowering Communities with Data Technologies

SESSION 2: TECHNICAL REQUIREMENTS AND ADDITIONAL TRANSPORT USE CASES

Josep Maria Salanova Grau CERTH-HIT

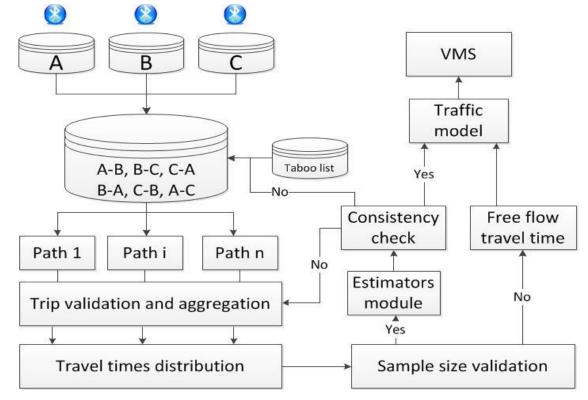

Real-time traffic conditions estimation

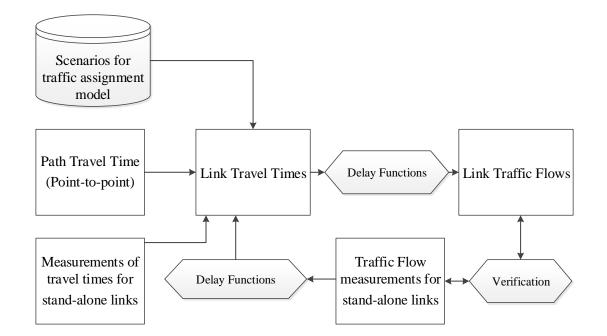



Processing of big data in Thessaloniki

- Traffic flow estimation from stationary probe data
- Travel time estimation using stationary probe data
- Travel time estimation using floating probe data
- Traffic flow estimation based on travel time
- Short-term traffic flow prediction
- Spatial expansion of traffic flows
- Real-time traffic conditions estimation

Traffic flow estimation based on stationary probe





Time interval used for data filtering	Without filtering	5min filter	15min filter	60min filter
Correlation coefficient	0.3412	0.2179	0.1972	0.0442
R ²	0.9166	0.9193	0.9337	0.8594
Largest differences	-401 / 623	-410 / 437	-336 / 389	-536 / 767
(absolute value and percentage ranges)	-26% / 75%	-23% / 61%	-22% / 57%	-35% / 79%

Travel time estimation based on stationary probe data

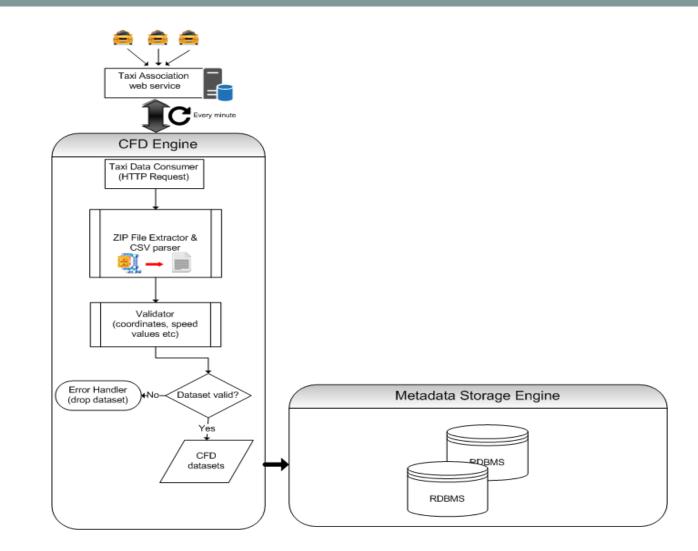
Traffic flow estimation based on travel time

Conversion from route travel time to link travel time

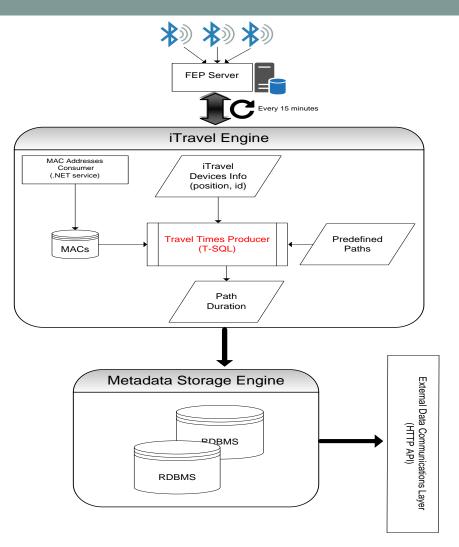
$$\min \delta_1 * \sum (A * x - b) + \delta_2 * \sum ((x - v0)/v0)$$
(1)

s.t.
$$x_i > t_{0i} \forall i \in I$$
 (2)

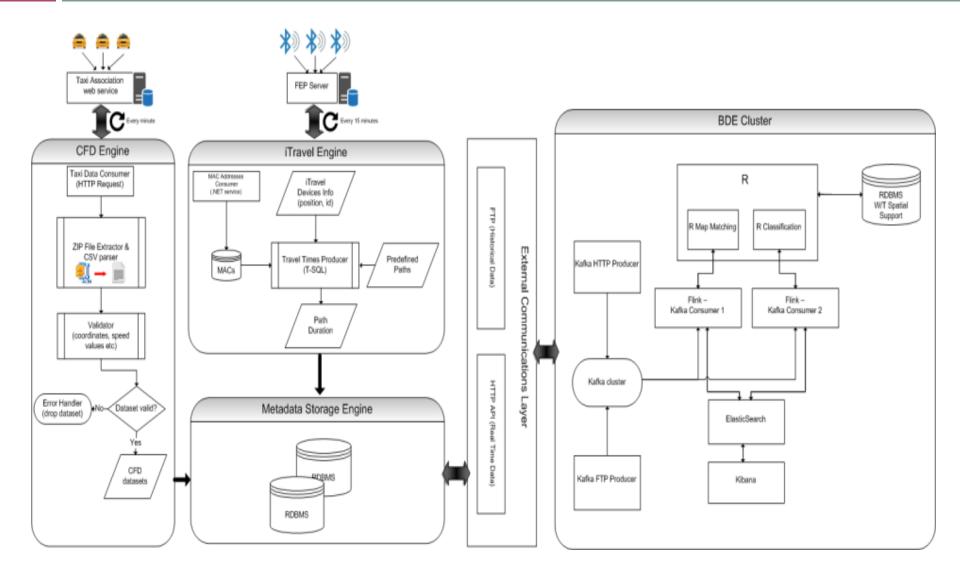
$$x_j = t_j \forall j \in J \tag{3}$$

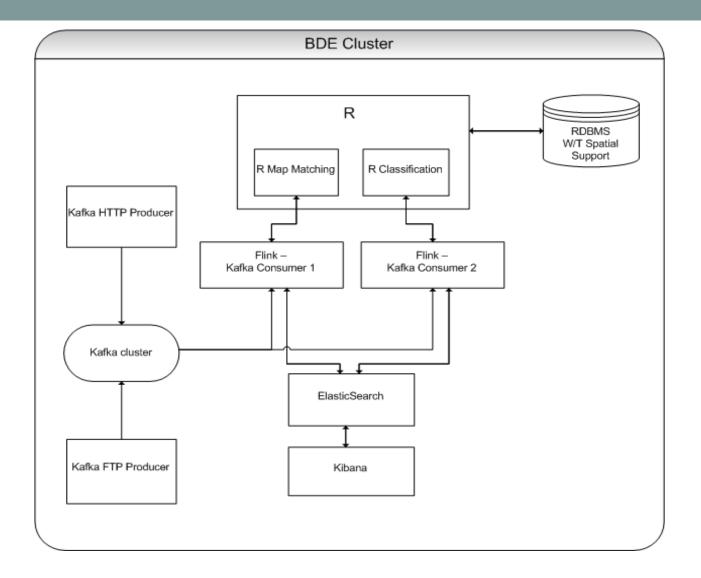

Linear autoregressive (AR) model

$$\varphi_k^{i+1} = \overline{\varphi} + \sum_{j=1}^N \beta_k^j * (\varphi_k^{i+1-j} - \overline{\varphi})$$
(4)


Spatial expansion of traffic flow

Data Expansion Algorithm (DEA, [Lederman and Wynter 2009])




Bluetooth Sensors data and estimated travel times on the road network

BDE Components integration with the legacy system

- What are the pros and cons of the technical implementation of the platform offered by BigDataEurope?
- How easy is to implement it to transport use case?
- Lessons learnt from the first pilot implementation?
- How adaptable / usable is it?

- Any non-technical barriers to be considered? (legal, open data)
- Does the open data flow initiative pose any threat/opportunity?
- In which transport use case can we reproduce the pilot?
- Which are the characteristics of the transport data that had to be considered in the design of the architecture ?

- Any non-technical barriers to be considered? (legal, open data)
 - Privacy (the driver IDs are modified every 24 hours)
 - Data owner is a private entity (we rely on their willing to share the data)
 - Updated maps are needed (OSM can be a solution)
 - Telecommunication costs (in our case are covered by the private company since is crucial for their professional activity)

- Does the open data flow initiative pose any threat/opportunity?
 - o ++ data standardization
 - o ++ data availability
 - o ++ up-to-date datasets
 - -- data quality validation

- In which transport use case can we reproduce the pilot?
 - In any city having similar data sets
 - In other transport modes (PuT)

BIG DATA EUROPE

Empowering Communities with Data Technologies

http://opendata.imet.gr/dataset

itravel-traveltimes

Current travel times for selected paths

JSON XML CSV

fcd-compass4d

Floating car data along 2 arterials (zones)

JSON XML CSV KML MAP

Dr. Josep Maria Salanova Grau

<u>jose@certh.gr</u>

+30 2310 498 433

M.Sc. Transport Engineer - A.U.Th.

Ph.D. Transport Engineer - UPC

Research Associate

CENTRE FOR RESEARCH AND TECHNOLOGY HELLAS (CE.R.T.H.)

6th km. Charilaou-Thermi Rd. P.O. Box 60361, 57001 Thermi, Thessaloniki, Greece Tel.: +30 2310.498433 • FAX: +30 2310.498269 e-mail: jose@certh.gr • www.hit.certh.gr

Josep Maria Salanova Grau CERTH-HIT

