Overtaking motorized traffic on rural roads

Eric Stemmler

Webinar- 08/03/2017

Background

- Number of crashes on rural roads lower than in urban areas and on highways, but level of severity higher
- Crashes on rural roads account for more than half of all fatal crashes
- Overtaking manoeuvres one of the most risky driving manoeuvres leading to serious/fatal crashes
- 50% fall into the age group 18 to 49
- Little opportunity to learn in driving schools
- Skills need to be acquired after passing driving tests

Background

- Overtaking is a demanding task and requires:
 - Accurate judgement of distance, speed of lead vehicle, acceleration of own vehicle, speed of oncoming vehicle
 - Observation of subsequent traffic
 - Accurate reaction to changes in the environment (sudden oncoming traffic may require to interrupt takeover manoeuvre)
 - Skills to manoeuvre through narrow roads with high accelerations
- Has been studied in driving simulator studies, observational studies, and FOTs
- Addressed again using NDS data of British, Dutch, French, German, and Polish driver

Research goal

Aim to...

- ... better understand the mechanisms behind overtaking on rural roads
- ... provide thoroughly descriptive statistics
- ... analyse the effect of factors such as...

age and gender

type of overtaking manoeuvre (flying vs. normal) presence of oncoming traffic time of day weather condition type of lead vehicle on performance

Method: Dataset

- NDS data collected in five European countries
- 55229 trips, 13200 hours of data basis of the analysis
- Extraction of takeover manoeuvres on rural roads
- Definition of a takeover manoeuvre
 - Two consecutive lane changes and passing one or more slower moving vehicles in between
 - Entering the opposite travel lane, passing the vehicles and moving back into own travel lane on a two-lane
 - A lane change is initiated when the lateral acceleration of the vehicle exceeds the 95th percentile of the zero-level lateral acceleration and ends the moment it falls below the 5th percentile afterwards.
- Number of takeover manoeuvres found:
 - ~1400 found by algorithm

Method: Performance indicators

1

					$\rightarrow \leftrightarrow \leftarrow$	
	Phase 0	Phase 1	Phase 2	Phase 3	Phase 4	Phase 5
Mean lat. accel.		Х	Х		Х	Х
Max lat. accel.		х	х		х	х
Duration	Х	Х	х	Х	х	х
Mean long. accel.	Х	х	х	Х	х	х
Max long. accel	Х	х	х	Х	х	х
Mean TTC/THW		х	х			
Min TTC/THW		x	x			
Mean TTC/THW					х	х
Min TTC/THW					х	х

Preliminary results

Preliminary Results

	Ор			
Gender	FR	PL	UK	
Female	0	1	3	4
Male	2	4	1	7
	2	5	4	11

Webinar- 08/03/2017

Preliminary results

Preliminary results

10

Expected results

Frequencies over day time

Expected results

Frequencies number of overtaken vehicles

Preliminary Results – Reducing false positives

comme	ent N
double be	nd 31
turning ego vehic	cle 24
lane marking confusi	on 21
	- 9
Low speed lev	/el 2
lane marking confusion, turning ego vehic	cle 2
glaring s	un 2
construction site, traffic lig	jht 1
overtaking construction site with traffic lig	jht 1
low speed level, indicating vehicle is overtak	en 1
entering city, turning ego vehic	cle 1
turning vehicle, decreasing spe	ed 1
double bend, takeover parking vehic	cle 1
overtaking after full stop, tractor, driver is pointed to the g	ap 1
followed vehicle is different from the one overtak	en 1
Overtaking cyclist after segme	ent 1
Low speed level, overtaking parking vehicles, wrong road ty	pe 1

Next steps

- Improve the overtaking algorithm to minimize false positives
- Run analysis scripts
- Produce descriptive results
- Analyse the effect of situational factors on overtaking performance

Thank you for your attention!

Webinar- 08/03/2017

